ML 35. Бильярдные шары

Ссылка на условие задания: cpp.mazurok.com

Условие

Для аккуратной расстановки шаров в «пирамидку» игроки в бильярд используют специальный равносторонний треугольник. Вычислите какое наибольшее количество шаров радиуса $r$ можно расставить на бильярдном столе при помощи треугольника со стороной $a$.

Изображение

Входные данные.

Длина стороны $a$, и радиус шаров $r$.

Выходные данные.

Число $n$, количество шаров.

Код.

Решение.

Для решения данной задачи нужно понимать что каждый шар занимает пространство вокруг себя которое равняется площади описанного вокруг данного шара треугольника. Чтобы посчитать количество шаров вмещаемых в треугольник надо воспользоваться формулой площади равностороннего треугольника через сторону для большого треугольника [latex]S = \frac{a^2\sqrt{3}}{4}[/latex] , и соответственно формулой площади треугольника в который вписан круг основываясь на радиус [latex]S1 = 3\sqrt{3}x^2[/latex] В результате деления данных формул получим количество шаров радиуса $r$ которые поместятся в Треугольника со стороной $a$.

Ссылка на решение задачи на сайте Try Haxe!

Даша Тарабаева
Даша Тарабаева

Latest posts by Даша Тарабаева (see all)

4 thoughts on “ML 35. Бильярдные шары

Добавить комментарий